Let f(x) = [x] + √{x}, where [x] denotes the greatest integer part of x and {x} denotes the fractional part of x. Then f−1(x)is
[x]+{x}2
Let y = f(x) and [x] = I y=I+√x−I
⇒√x−I=(y−I)
⇒x−I=(y−I)2
⇒x=(y−I)2+I
⇒x={y}2+[y]
∴f−1(x)=[x]+{x}2
Alternatively
y=[x]+√{x}
⇒[y]+{y}=[x]+√{x}
⇒{y}=√{x}.....(∵[y]=[x])
⇒{x}={y}2
⇒{x}+[x]=[y]+{y}2
⇒x=[y]+{y}2∴f−1(x)=[x]+{x}2