Let f(x)=[x]+√x−[x], where [x] denotes the greatest integer function. Then
f(x) is continuous on R
f(x)=[x]+√x−[x]
∵[x]≤x⇒x−[x]≥o
∴Domain of f(x) is R
For continuity, crtical points are the integer values with greatest integer function.
∴f(x)=[x]+√I−[I]
=I+√I−I
=I
(ii) Let x=I+f;where f>0&f→o
∴f(x)=[I+f]+√I+f−[I+f]
=I+√f
∵f(x)→I
(iii) Let x=I−f;where f>o & f→o
f(x)=[I−f]+√I−f−[I+1]
=I−1+√/I−f−/I+1
=I−1+√1−f
∵f→o;1−f→1⇒√1−f→1
∴f(x)→I−1+1=I
∴ f(x) leads to I for the neighbour hood value of I always
Hence f(x) is continuous ∀ x ϵ R