⇒f(2x+2y,2y−2x)=f(8y,−8x)
⇒f(x,y)=f(2x+2y,2y−2x)=f(8y,−8x) (by (1))
Now again, since f(x,y)=f(8y,−8x) .....(2)
⇒f(8y,−8x)=f[8(−8x),−8(8y)] [using Eq. (2)]
⇒f(8y,−8x)=f(−64x,−64y)
⇒f(x,y)=f(2x+2y,2y−2x)=f(8y,−8x)=f(−64x,−64y)
Again since, f(x,y)=f(−64x,−64y) .....(3)
⇒f(−64x,−64y)=f(−64×(−64x),−64×(−64y))
=f(212x,212y)
⇒f(x,y)=f(212x,212y) [using Eq. (3)]
⇒f(2x,0)=f(212.2x,0)=f(212+x,0) .....(4)
Given, g(x,0)=f(2x,0)
⇒ g(x,0)=f(2x,0)=f(212+x,0) [using Eq. (4)]
⇒g(x,0)=g(x+12,0)
Hence, g(x) is periodic with period 12.