Let ddxF(x)=(esinxx),x>0.If∫413xesinx3dx=F(k)−F(1), then one of the possible values of k is
A
15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
63
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
64
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D 64 ddxF(x)=(esinxx),x>0 F(x)=∫esinxxdx−−−−−−−−(1) Also,∫413xesinx3dx=∫413x2x3.esinx3dx=F(k)−F(1)(given) Letx3=z⇒3x2dx=dz ∴∫641esinzzdz=F(k)−F(1) [Fromeq.(1)] ⇒[F(z)]641=F(k)−F(1)⇒k=64