Let f(x)=αx2x+1,x≠-1. The value of α for which f(a)=a,(a≠0) is
1-1a
1a
1+1a
1a-1
Explanation for Correct Answer:
Given that,.
f(x)=αx2x+1,x≠-1
f(a)=a,(a≠0)
Calculating f(a):
f(a)=αa2a+1
Now,a=αa2a+1
⇒α.a2=a(a+1)⇒α.a=(a+1)⇒α=a+1a
Therefore,α=1+1a
Hence, option (C) is the correct answer
Let α,β denote the cube roots of unity other than 1 and α≠β. If S=∑n=0302(-1)nαβn. Then the value of S is