Let f(x)=∫x1+x2dx,x≥0. Then f(3)-f(1) is equal to?
-π6+12+34
π6+12-34
-π12+12+34
π12+12-34
Explanation for the correct solution
Given that: f(x)=∫x1+x2dx,x≥0
Let x=tan2t
differentiating with respect to t,
dx=2.tant.sec2tdt
f(x)=∫x1+x2dx=∫tan2t(1+tan2t)22.tant.sec2tdt=∫tantsec4t2.tant.sec2tdt=2∫sin2t.dt=∫1-cos2tdt=t-sin2t2
Now, whenx=3,t=π3,whenx=1,t=π4
Therefore,
f(3)-f(1)=π3-π4-12sin2π3-sinπ2=π12-1232-1=π12+12-34
Hence, the correct answer is option (D).