(b) 12 If fx is continuous at x=π4, then limx→π4fx=fπ4 ⇒limx→π4tan π4-xcot 2x=fπ4 If π4-x=y, then x→π4 and y→0. ∴ limy→0tan ycot 2π4-y=fπ4⇒limy→0tanycotπ2-2y=fπ4⇒limy→0tan ytan 2y=fπ4⇒limy→0tan yytan 2yy=fπ4⇒limy→0tan yy2 tan 2y2y=fπ4⇒12limy→0tan yytan 2y2y=fπ4⇒12limy→0tan yylimy→0tan 2y2y=fπ4⇒1211=fπ4⇒fπ4=12