Let f(x)=x-2 and g(x)=f(f(x)),x∈0,4.Then ∫03(g(x)-f(x))dx is equal to:
12
0
1
32
Explanation for the correct option:
Given that:
f(x)=x-2
g(x)=f(f(x)),x∈0,4
Calculating g(x):
f(x)=x-2=x-2,x≥22-x,x<2
g(x)=f(f(x))=f(x)-2=x-2-2=x-4,x≥2x,x< 2=4-x,x∈2,4x-4,x≥4x,x∈0,2
Therefore,
∫03(g(x)-f(x))dx=∫03g(x)dx-∫03f(x)dx=12×2×2+1+12×1×1-12×2×2+12×1×1=72-52=1
Hence, the correct option is (C).
Let {x}and[x] denote the fractional part of x and the greatest integer ≤x respectively of a real number x. If∫0nxdx,∫0n[x]dx and 10(n2-n),(n∈N,n>1) are three consecutive terms of a G.P., then n is equal to