Let g be the greatest integer function. Then the function f(x)=(g(x))2−g(x) is discontinuous at
Function is continious at k if limx→kf(x) exist and limx→kf(x)=f(k)
given g(x) is greatest integer funtion f(x)=(g(x))2−g(x)
Lets check its continiuty at integer k
limx→k−(g(x))2−g(x)=limh→0(g(k−h))2−g(k−h)=(k−1)2−(k−1)
limx→k+(g(x))2−g(x)=limh→0(g(k+h))2−g(k+h)=(k)2−(k)
We can see that LHL≠ RHL
So this function will be discontinuous at all integers.