Let gi:[π8,3π8]→R,i=1,2 and f:[π8,3π8]→R be functions such that g1(x)=1,g2(x)=|4x−π| and f(x)=sin2x, for all x∈[π8,3π8].
Define Si=∫3π8π8f(x)⋅gi(x)dx,i=1,2
The value of 48S2π2 is
Open in App
Solution
S2=∫3π8π8sin2x|4x−π|dx =∫3π8π84sin2x.∣∣x−π4∣∣dx
Let x−π4=t⇒dx=dt S2=∫π8−π84sin2(π4+t)|t|dt=∫π8−π82[1−cos(2(π4+t))]|t|dt=∫π8−π8(2+2sin2t)|t|dt=∫π8−π82|t|dt+2∫π8−π8|t|sin(2t)dt =4∫π80tdt+0 S2=2t2|π/80=π232 ⇒48S2π2=32