Let g(x)=2f(x2)+f(2âx) and fâČâČx)<0 â xÏ”(0,2), then g(x) increases in
(0,43)
Given : g(x)=2f(x2)+f(2−x)
Differentiating :
g′(x)=f′(x2)−f′(2−x)
∵f′′(x)<0⇒f′(x) is a decreasing function in (0,2)
For g(x) to be increasing g′(x)>0
⇒f′(x2)>f′(2−x)
⇒x2<2−x
⇒3x2<2
⇒x<43
⇒xϵ(0,43)