f′′(x)>0⇒f′(x) is strictly increasing function.
Also, g(x)=14f(2x2−1)+12f(1−x2)
g(x) is necessarily strictly increasing if
g′(x)>0
⇒14f′(2x2−1)⋅(4x)+12f′(1−x2)⋅(−2x)>0
⇒x{f′(2x2−1)−f′(1−x2)}>0
Case 1:
If x>0, then f′(2x2−1)−f′(1−x2)>0
⇒2x2−1>1−x2
⇒x∈(−∞,−√23)∪(√23,∞)
∴x∈(√23,∞) ⋯(1)
Case 2:
If x<0, then f′(2x2−1)−f′(1−x2)<0
⇒2x2−1<1−x2
⇒x∈(−√23,√23)
∴x∈(−√23,0) ⋯(2)
From (1) and (2), we have
x∈(−√23,0)∪(√23,∞)
Hence, a+b=0