wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let g(x)=14f(2x21)+12f(1x2) for all xR, where f′′(x)>0 xR. If g(x) is necessarily strictly increasing in the interval (a,0)(b,), then the value of (a+b) is

Open in App
Solution

f′′(x)>0f(x) is strictly increasing function.
Also, g(x)=14f(2x21)+12f(1x2)
g(x) is necessarily strictly increasing if
g(x)>0
14f(2x21)(4x)+12f(1x2)(2x)>0
x{f(2x21)f(1x2)}>0

Case 1:
If x>0, then f(2x21)f(1x2)>0
2x21>1x2
x(,23)(23,)
x(23,) (1)

Case 2:
If x<0, then f(2x21)f(1x2)<0
2x21<1x2
x(23,23)
x(23,0) (2)
From (1) and (2), we have
x(23,0)(23,)
Hence, a+b=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon