wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let g(x)=f(x)(xa)(xb)(xc), where f(x) is a polynomial of degree less than 3. If (ab)(bc)(ca)=k, where k is a non-zero constant, then

A
g(x) dx=1k∣ ∣ ∣1af(a)ln|xa|1bf(b)ln|xb|1cf(c)ln|xc|∣ ∣ ∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
g(x) dx=1k∣ ∣ ∣1af(a)ln|xa|1bf(b)ln|xb|1cf(c)ln|xc|∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dg(x)dx=1k∣ ∣ ∣1af(a)(xa)21bf(b)(xb)21cf(c)(xc)2∣ ∣ ∣
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
dg(x)dx=1k∣ ∣ ∣1af(a)(xa)21bf(b)(xb)21cf(c)(xc)2∣ ∣ ∣
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D dg(x)dx=1k∣ ∣ ∣1af(a)(xa)21bf(b)(xb)21cf(c)(xc)2∣ ∣ ∣
g(x)=f(x)(xa)(xb)(xc)
By partial fractions, we have
g(x)=f(a)(xa)(ab)(ac)+ f(b)(ba)(xb)(bc)+ f(c)(ca)(cb)(xc)
g(x)=[1(ab)(bc)(ca)]× [f(a)(cb)xa+f(b)(ac)xb+f(c)(ba)xc]

k=(ab)(bc)(ca)
g(x)=1k×[f(a)(cb)xa+f(b)(ac)xb+f(c)(ba)xc]

g(x)=1k∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣1af(a)(xa)1bf(b)(xb)1cf(c)(xc)∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

g(x) dx=1k∣ ∣ ∣1af(a)ln|xa|1bf(b)ln|xb|1cf(c)ln|xc|∣ ∣ ∣+C
and
dg(x)dx=1k∣ ∣ ∣1af(a)(xa)21bf(b)(xb)21cf(c)(xc)2∣ ∣ ∣
dg(x)dx=1k∣ ∣ ∣1af(a)(xa)21bf(b)(xb)21cf(c)(xc)2∣ ∣ ∣

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon