wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let g(x)=limnxnf(x)+h(x)+12xn+3x+3, x11 and g(1)=limx1sin2(π2x)ln(sec(π2x)) be a continuous function at x=1, find the value of 4g(1)+2f(1)h(1). Assume that f(x) and h(x) are continuous at x=1.

Open in App
Solution

g(1)=limx1sin2(π.2x)ln(sec(π.2x))00
form
=limx0sin(π.2x)cos(π.2x)(π.2xlog2)(π.2xlog2)sec(π.2x)×sec(π.2x)tan(π.2x)
=limx02cos2(π.2x)=2×1=2
For x>1
as n,xn
g(x)=limnf(2)+lnxxn+1xn2+3xxn+3xn
=f(x)+0+02+0+0=f(x)2
For x<1
g(x)=limnxnf(x)+h(x)+12xn+3x+3
=0+h(x)+10+3x+3=h(x)+13(x+1)
limx1g(x)=limx1h(x)+13(x+1)=h(1)+16
limx1+g(x)=limx1+f(x)2=f(1)2
Given g(x) is continuous at x=1
g(1)=h(1)+16=f(1)2
f(x)=2g(1),h(1)=6g(1)1
g(1)+2f(1)h(1)
=4g(1)+2(2g(1))(6g(1)1)
=2g(1)1=41=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon