Let g(x)=∫x0f(t) dt where 12≤f(t)≤1,tϵ[0,1] and 0≤f(t)≤12 for tϵ(1,2), then [IIT Screening 2000]
g(2)=∫20f(t)dt=∫10f(t)dt+∫21f(t)dt
As 12≤f(t)≤1 for 0≤t≤1,
∫1012dt≤∫10f(t)dt≤∫10t dt or 12≤∫10f(t) dt≤1……(i)
As 0≤f(t)≤12 for 1<t≤2,∫210 dt≤∫21f(t) dt≤∫2112 dt
∴0≤∫21f(t) dt≤12……(ii)
Adding (i) and (ii), 12≤g(2)≤32
∴ g(2) satisfies the inequality 0≤g(2)<2