The correct option is D 3f(x)(h(x))21+(h(x))3
We have,
h′(x)=f(x) (Since h(x) is the anti-derivative of f(x))
Let p(x)=ln(1+(h(x))3)
On differentiating we get,
p′(x)=3h(x)2h′(x)(1+(h(x))3)
⇒p′(x)=3h(x)2f(x)(1+(h(x))3)
The anti-derivative of p′(x) is p(x)