Let ^a, ^b and ^c be three unit vectors such that
^a×(^b×^c)=√32(^b+^c). If
^b is not parallel to ^c, then the angle between ^a and ^b is
5π6
Given, |^a|=|^b|=|^c|=1and ^a×(^b×^c)=√32(^b+^c)
Now, consider ^a×(^b×^c)=√32(^b+^c)
⇒(^a.^c)^b−(^a.^b)^c=√32^b+√32^c
On comparing, we get
^a.^b=−√32⇒|^a||^b| cos θ=−√32⇒ cos θ=−√32 [∵ |^a|=|^b|=1]⇒ cos θ=cos(π−π6)⇒θ=5π6