Let I1=∫π6π3sinxxdx,I2=∫π6π3sin(sinx)sinxdx,I3=∫π6π3sin(tanx)tanxdx, then
A
I1<I2<I3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
I2<I1<I3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
I3<I1<I2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
I3<I2<I1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CI3<I1<I2 f(x)=sinxx is a decreasing function and sinxx>0 for all x in (0,π) Since, sinx<x<tanx ⇒sin(sinx)sinx>sinxx>sin(tanx)tanxforπ6<x<π3 ∴I2>I1>I3