Let I1=(π4)2+√2,I2=(tan−1(1e))2+2e√e2+1,I3=(tan−1e)2+2√e2+1, then which of the following is true?
I1<I2<I3
I2<I1<I3
I1<I3<I2
I3<I2<I1
Consider f(x)=(tan−1x)2+2√x2+1 then f′(x)>0∀ xε(0,∞) ⇒f(1e)<f(1)<f(e)⇒I2<I1<I3.
Now what should be the correct relation between I1, I2 and I3.
Let f: R → R such that f(x + 2y) = f(x) + f(2y) + 4xy, ∀ x, y ϵ R and f(0) = 0.
If I1=∫10f(dx),I2=∫0−1f(x)dx,and I3=∫1−1f(x)dx,then