The given function f is defined as,
f( x )=x+ 1 x
The derivative of function f is given as,
f ′ ( x )= df( x ) dx = d( x+ 1 x ) dx =1− 1 x 2
Determine the disjoint in the given interval by,
f ′ ( x )=0 1− 1 x 2 =0 x=±1
From the above equation, x=1 and x=−1. Divide the real axis in three disjoint intervals, ( −∞,1 ),( −1,1 ) and ( 1,∞ ).
For the interval ( −1,1 ),
−1<x<1 x 2 <1 1< 1 x 2 , x≠0 1− 1 x 2 <0, x≠0
Therefore, f ′ ( x )<0 in interval ( −1,1 ). Hence, function f is strictly decreasing in ( −1,1 ).
For the intervals ( −∞,−1 ) and ( 1,∞ ),
x<−1 1<x 1> 1 x 2 1− 1 x 2 >0
Therefore, f ′ ( x )>0 in intervals ( −∞,1 ) and ( 1,∞ ). Hence, function f is strictly increasing in intervals ( −∞,1 ) and ( 1,∞ ).
Therefore, it is proved that the function f is strictly increasing in the given interval I disjoint from ( −1,1 ).