Let I=nπ+λ∫0|sinx|dx, where n∈N,0≤λ<π. Then the value of I is
A
2n+1+cosλ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2n+1−cosλ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2n−1−sinλ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2n+1+sinλ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2n+1−cosλ Given: I=nπ+λ∫0|sinx|dxn∈N,0≤λ<π ⇒I=λ∫0|sinx|dx+nπ+λ∫λ|sinx|dx
Using the property: a+nT∫af(x)dx=nT∫0f(x)dx
Where T is the period of f(x)
For |sinx|, the period is π
Now, ⇒I=λ∫0|sinx|dx+nπ∫0|sinx|dx=[−cosx]λ0+nπ∫0sinxdx=−(cosλ−1)+n(1+1)∴I=2n+1−cosλ