Let I=∫dxa+bcosx where a,b>0 and a+b=λ1,a−b=λ2 (where C is a constant of integration)
A
If λ2=0, then I=2λ1tan(x2)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
If λ2>0, then I=1√λ1λ2tan−1(√λ2λ1tanx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
If λ2<0, then I=2√−λ1λ2loge∣∣√λ1+√−λ2tanx2√λ1−√−λ2tanx2∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
If λ2<0, then I=1√−λ1λ2loge∣∣√λ1+√−λ2tanx2√λ1−√−λ2tanx2∣∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A If λ2=0, then I=2λ1tan(x2)+C D If λ2<0, then I=1√−λ1λ2loge∣∣√λ1+√−λ2tanx2√λ1−√−λ2tanx2∣∣+C I=∫dxa+b(1−tan2x21+tan2x2)tan(x2)=t⇒dtdx=12sec2x2 I=∫2dt(a+b)+(a−b)t2=2∫dtλ1+λ2t2given thatλ1>0Case (i) Ifλ2>0I=2√λ1λ2tan−1(√λ2λ.t)+C Case (ii)λ2=0⇒I=2∫dtλ1=2λ1tanx2+C Case (iii)λ2<0⇒I=2∫dtλ1−(−λ2)t2⇒I=1√−λ1λ2ln∣∣√λ1+√−λ2tanx2√λ1−√−λ2tanx2∣∣+C