wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let I=dxa+ bcos x where a,b>0 and a+b=λ1,ab=λ2 (where C is a constant of integration)

A
If λ2=0, then I=2λ1tan(x2)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
If λ2>0, then I=1λ1λ2tan1(λ2λ1tanx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
If λ2<0, then I=2λ1λ2logeλ1+λ2 tanx2λ1λ2 tanx2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
If λ2<0, then I=1λ1λ2logeλ1+λ2 tanx2λ1λ2 tanx2+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D If λ2<0, then I=1λ1λ2logeλ1+λ2 tanx2λ1λ2 tanx2+C
I=dxa+b(1tan2x21+tan2x2)tan(x2)=tdtdx=12sec2x2
I=2dt(a+b)+(ab)t2=2dtλ1+λ2t2given that λ1>0Case (i) If λ2>0I=2λ1λ2tan1(λ2λ.t)+C
Case (ii) λ2=0I=2dtλ1=2λ1tanx2+C
Case (iii) λ2<0I=2dtλ1(λ2)t2I=1λ1λ2lnλ1+λ2tanx2λ1λ2tanx2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon