wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let Im=π01cosmx1cosxdx
Use mathematical induction to prove that
Im=mπ,m0 , , 1, 2.....

Open in App
Solution

p(1)=π01cosx1cosxdx=[x]π0=1.π=π
p(2)=π01cos2x1cosxdx=π02sin2x2sin2(x/2)
π04.cos2x2dx
=π02(1+cosx)dx=2.π+0=2π
Let us assume that p (m) = mn and we will establish that p(m + 1) = (m + 1)π
p(m+1)=π01cos(m+1)1cosxdx=(m+1)π
Now cos (m + 1) x + cos (m - 1) x = 2 cos mx cos x
-cos(m + 1)x
= cos(m - 1) x - 2 cos mx cos x
or 1 - cos (m + 1)x
= 1 + cos(m - 1) x - 2 cos mx cos x
= -[1 - cos(m - 1) x] + 2 cos mx (1 - cos x) + 2 - 2 cos mx
Now divide throughout by 1 - cos x and integrate
p(m + 1) (by 1)
= -p(m - 1) + 2 p (m) + π0 2 cos mx dx
= -(m - 1) π + 2 mπ + 2 [sinmx]π0
= (m + 1) π + 0 = (m + 1) π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon