Let Im=∫π01−cosmx1−cosxdx Use mathematical induction to prove that Im=mπ,m0 , , 1, 2.....
Open in App
Solution
p(1)=∫π01−cosx1−cosxdx=[x]π0=1.π=π p(2)=∫π01−cos2x1−cosxdx=∫π02sin2x2sin2(x/2) ∫π04.cos2x2dx =∫π02(1+cosx)dx=2.π+0=2π Let us assume that p (m) = mn and we will establish that p(m + 1) = (m + 1)π ∴p(m+1)=∫π01−cos(m+1)1−cosxdx=(m+1)π Now cos (m + 1) x + cos (m - 1) x = 2 cos mx cos x ∴ -cos(m + 1)x = cos(m - 1) x - 2 cos mx cos x or 1 - cos (m + 1)x = 1 + cos(m - 1) x - 2 cos mx cos x = -[1 - cos(m - 1) x] + 2 cos mx (1 - cos x) + 2 - 2 cos mx Now divide throughout by 1 - cos x and integrate ∴ p(m + 1) (by 1) = -p(m - 1) + 2 p (m) + ∫π0 2 cos mx dx = -(m - 1) π + 2 mπ + 2 [sinmx]π0 = (m + 1) π + 0 = (m + 1) π