Let In=∫∞0e−x(sinx)ndx,nϵN,n>1 then I2008I2006 equals
A
2007×200620082+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2008×200720082+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2006×200420082−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2008×200720082−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2008×200720082+1 In=∫∞0e−x(sinx)ndx=[sinnx(−e−x)]∞0+∫∞0nsinn−1xcosxe−xdx=0+n∫∞0(sinn−1xcosx)e−xdx=n[(sinn−1xcosx)(−e−x)]∞0−n∫∞0{−sinnx+(n−1)sinn−2xcos2x}(−e−x)dx=0+n∫∞0e−x{−sinnx+(n−1)sinn−2x(1−sin2x)}dx=n∫∞0e−x{(n−1)sinn−2x−nsinnx}dx=n(n−1)In−2−n2In(1+n2)In−2−n2In we have (1+n2)In=n(n−1)In−2 then InIn−2=n(n−1)n2+1