Let (i) (p∨q)∨(p∨∼q),
(ii) (p∧q)∧(p∨∼q),
(iii) (p∨q)∧(p∨∼q),
(iv) (p∨q)∨(p∧∼q)
which one is tautology
p | q | ∼q | p∨q | p∧∼q | (p∨q)∨(p∧∼q) |
T | T | F | T | F | T |
T | F | T | T | T | T |
F | T | F | T | F | T |
F | F | T | F | F | F |
p | q | ∼q | p∧q | p∧∼q | (p∧q)∧(p∨∼q) |
T | T | F | T | T | T |
T | F | T | F | T | F |
F | T | F | F | F | F |
F | F | T | F | T | F |