Let I=∫31√3+x3dx, then the value of I lies in the interval
[4, 6]
[4,2√30]
f(x)=√(3+x3) this is increasing function on [1, 3]
least value (m) = f(1) = √(3+13)=2 and
greatest value M=f(3)=√(3+33)=√30
So (3−1)2≤∫31√(3+x3)dx≤(3−1)√30
4≤∫31√3+x3 dx≤2√30