Let ∫1−7cos2xsin7cos2xdx=g(x)sin7x+c, then the value of g′(0)+g"(π4) is
A
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 5 Let I=∫1−7cos2xsin7xcos2xdx =∫dxsin7xcos2x−∫7sin7xdx =∫1sin7x.sec2xdx−∫7sin7xdx =1sin7x.tanx−∫−7cosxsin8x.tanxdx−∫7sin7xdx+c =tanxsin7x+∫7sin7xdx−∫7sin7x+c =tanxsin7x+c g(x)=tanx,g′(x)=sec2xandg"(x)=2sec2xtanx ∴g′(0)+g"(π4)=1+2(√2)2=5