The correct option is C J−K=0
Given: J=1/2∫0(14−x2)4dx
We know that b∫af(x)dx=b∫af(a+b−x)dx
∴J=1/2∫0(14−(12−x)2)4dx
⇒J=1/2∫0(x−x2)4dx
⇒J=1/2∫0x4(1−x)4dx=K
∴J−K=0 and JK=1
We have, J=221/2∫0x4(1−x)4dx
We know that 2a∫0f(x)dx=2a∫0f(x)dx if f(2a−x)=f(x).
∴J=121∫0x4(1−x)4dx=K
We have,
K=121∫0x4(1−x)4dx
Put x=sin2θ⇒dx=2sinθcosθ dθ
∴K=π/2∫0sin9θ⋅cos9θ dθ
⇒K=(8×6×4×2)(8×6×4×2)(18×16×14×12×10×8×6×4×2)
⇒K=(8×6×4×2)(18×16×14×12×10)
∴K=11260