wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let J=1/20(14x2)4dx and K=1/20x4(1x)4dx. Then

A
K=11260
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
J=1210x4(1x)4dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
JK=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
JK=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C JK=0
Given: J=1/20(14x2)4dx
We know that baf(x)dx=baf(a+bx)dx
J=1/20(14(12x)2)4dx
J=1/20(xx2)4dx
J=1/20x4(1x)4dx=K
JK=0 and JK=1


We have, J=221/20x4(1x)4dx
We know that 2a0f(x)dx=2a0f(x)dx if f(2ax)=f(x).
J=1210x4(1x)4dx=K


We have,
K=1210x4(1x)4dx
Put x=sin2θdx=2sinθcosθ dθ
K=π/20sin9θcos9θ dθ
K=(8×6×4×2)(8×6×4×2)(18×16×14×12×10×8×6×4×2)
K=(8×6×4×2)(18×16×14×12×10)
K=11260

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon