Question
Let K be a positive real number and A=⎡⎢
⎢⎣2k−12√k2√k2√k1−2k−2√k2k−1⎤⎥
⎥⎦ and B=⎡⎢⎣02k−1√k1−2k02−√k−2√k0⎤⎥⎦. If det(adjA)+det(adjB)=106, then [k] is equal to.
[Note : adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k].