Let k be a positive real number and let A=⎡⎢
⎢⎣2k−12√k2√k2√k1−2k−2√k2k−1⎤⎥
⎥⎦ and B=⎡⎢
⎢⎣02k−1√k1−2k02√k−√k−2√k0⎤⎥
⎥⎦ .
If det (adjA)+det(adjB)=106,then[k] is equal to
[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k].