Let K be positive real number and let A=⎡⎢
⎢⎣2K−12√K2√K2√K1−2K−2√K2K−1⎤⎥
⎥⎦andB=⎡⎢⎣01−K√K−1K−10K−2−√K−12−K0⎤⎥⎦ If det(AdjA) + det(AdjB) = 729, then the value of K is
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 1 |A|=⎡⎢
⎢⎣2K−12√K2√K2√K1−2K−2√K2K−1⎤⎥
⎥⎦ operate R2→R2+R3 and take (2K + 1) common from R2
|A|=(2K+1)⎡⎢⎣2K−12√K2√K01−1−2√K2K−1⎤⎥⎦OperateC2→C2+C3|A|=∣∣
∣
∣∣2K−14√K2√K00−1−2√K2K−1−1∣∣
∣
∣∣=(2K+1)(2K+1)2=(2K+1)3 and |B| = 0 (skew-symmetric determinant of odd order) |A|=(2K+1)3⇒|AdjA|=(|A|)n−1⇒|A|2=(2K+1)3(2K+1)3forn=3|AdjB|=|B|2=0⇒(2K+1)6=729=36⇒2K+1=3⇒K=1