Let k be the non-zero real number such that the quadratic equation kx2+2x+k=0 has two distinct real roots α and β(α<β).
If α<2 and β>5, then
k ϵ(−513,0)
Let f(x)=kx2+2x+k
kf(2)<0k(5k+4)<0
−45<k<0...(i)
Also,
kf(5)<0⇒k(26k+10)<0⇒−513<k<0...(ii)
∴ from (i) and (ii)
kϵ(−513,0)