The correct option is D ϕ (an empty set)
f(x)=sin|x|−|x|+2(x−π)cos|x|
f(x)={sinx−x+2(x−π)cosx,x≥0−sinx+x+2(x−π)cosx,x<0
f′(x)={cosx−1−2(x−π)sinx+2cosx,x≥0−cosx+1−2(x−π)sinx+2cosx,x<0
f′(0+)=1−1−2(0−π)sin0+2cos0=2f′(0−)=−cos0+1−2(0−π)sin0+2cos0=2∴f′(0+)=f′(0−)=2
Hence, f(x) is differentiable at x=0
So, it is differentiable everywhere.