Let k denote the greatest integer less than or equal k. If N be the sum of all the values of x satisfying equation [x2]−[x3]=x7, then ∣∣∣N7∣∣∣ is equal to
Open in App
Solution
Put x=6q+r where 0≤r≤5 [x2]−[x3]=x7⇒[r2]−[r3]=−q7+r7
For r=0, we get q=0⇒x=0
For r=1, we get q=1⇒x=7
For r=2, we get q=−5⇒x=−28
For r=3, we get q=3⇒x=21
For r=4, we get q=−3⇒x=−14
For r=5, we get q=−2⇒x=−7 ∴N= Sum of all values =−21 ⇒∣∣∣N7∣∣∣=3