[x9]=[x[11.5]] (∵π2∈(9,10))⇒[x9]=[x11]
Case:1. If 0≤x9<1 and 0≤x11<1
⇒0≤x<9 and 0≤x<11
So, positive integral solutions of x are {1,2,3,…8}
Case:2. If 1≤x9<2 and 1≤x11<2
⇒9≤x<18 and 11≤x<22
So, positive integral solutions of x are {11,12,13,…17}
Case:3. If 2≤x9<3 and 2≤x11<3
⇒18≤x<27 and 22≤x<33
So, positive integral solutions of x are {22,23,24,…26}
Case:4. If 3≤x9<4 and 3≤x11<4
⇒27≤x<36 and 33≤x<44
So, positive integral solutions of x are {33,34,35}
Case:5. If 4≤x9<5 and 4≤x11<5
⇒36≤x<45 and 44≤x<55
So, positive integral solution of x is {44}
Case:6. If 5≤x9<6 and 5≤x11<6
⇒45≤x<54 and 55≤x<66
So, no positive integral solutions of x is possible.
∴ Total number positive integral solutions
=8+7+5+3+1=24