Let [k] denotes the greatest integer less than or equal to k. Then the number of positive integral solutions of the equation [x[π2]]=⎡⎢ ⎢⎣x[1112]⎤⎥ ⎥⎦ is
[x[π2]]=⎡⎢
⎢⎣x[1112]⎤⎥
⎥⎦
⇒[x[9.87]]=[x[11.5]]
⇒[x9]=[x11]
Case I:0≤x9<1 and 0≤x11<1
⇒0≤x<9 and 0≤x<11
Common value of x is {1,2,3,…,8}
Case II:1≤x9<2 and 1≤x11<2
⇒9≤x<18 and 11≤x<22
⇒x∈{11,12,…,17}
Case III:2≤x9<3 and 2≤x11<3⇒18≤x<27 and 22≤x<33
⇒x∈{22,23,…,26}
Case IV:3≤x9<4 and 3≤x11<4⇒27≤x<36 and 33≤x<44
⇒x∈{33,34,35}
Case V:4≤x9<5 and 4≤x11<5
⇒36≤x<45 and 44≤x<55
⇒x∈{44}
∴ Total number of positive integers =8+7+5+3+1=24