Given that,
L1:x−33=y−8−1=z−31A(3r1+3,−r1+8,r1+3)L2:x+3−3=y+72=z−64B(−3r2−3,2r2−7,4r2+6)
Direction ratio of PQ=−3r2−3r1−6,2r2+r1−15,4r2−r1+3
−3r2−3r1−6,2r2+r1−15,4r2−r1+3−3(3r1+3r2+6)−2r2−r1+15+4r2−r1+3=0−3(3r1+3r2+6)+2(2r2+r1−15)+4(4r2−r1+3)=0−11r1−7r2=07r1+29r2=0r1=0r2=0A(3,8,3)B(−3,−7,6)→r1=3ˆi+8ˆj+3ˆk+λ(3ˆi−ˆj+ˆk)→r2=3ˆi+8ˆj+3ˆk+λ(3ˆi−ˆj+ˆk)
Shortest distance =∣∣(6ˆi+15ˆj−3ˆk).(3ˆi−ˆj+ˆk)×(−3ˆi+2ˆj+4ˆk)∣∣∣∣(3ˆi−ˆj+ˆk)×(−3ˆi+2ˆj+4ˆk)∣∣
=36+225+9√36+225+9=√270
Then,
We get L1 and L2 is √270.