wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let L1, and L2 denotes the lines
r=^i+λ(^i+2^j+2^k),λR and
r=μ(2^i^j+2^k),μR respectively.
If L3 is a line which is perpendicular to both L1 and L2 and cuts both of them, then which of the following option describe(s) L3?

A
r=29(4^i+^j+^k)+t(2^i+2^j^k),tR
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
r=29(2^i^j+2^k)+t(2^i+2^j^k),tR
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
r=13(2^i+^k)+t(2^i+2^j^k),tR
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
r=t(2^i+2^j^k),tR
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C r=13(2^i+^k)+t(2^i+2^j^k),tR

Equation of line L1:r=^i+λ(^i+2^j+2^k), λR
Equation of line L2:r=μ(2^i^j+2^k), μR
Therefore, Point on lines L1 and L2 are A(1λ,2λ,2λ) and B(2μ,μ,2μ)
AB=(2μ+λ1)^i+(μ2λ)^j+(2μ2λ)^k
L3 is perpendicular to both L1 and L2
L3(L1×L2)
L3=m∣ ∣ ∣^i^j^k122212∣ ∣ ∣=3m(2^i+2^j^k)=t(2^i+2^j^k m,tR)
Direction ratios of AB will be (2t,2t,t) which is propotional to (2,2,1)
Hence, 2μ+λ12=μ2λ2=2μ2λ1=c (Let)
2μ+λ1=2c...(i)
μ2λ=2c...(ii)
2μ2λ=c...(iii)
On solving equations we get,
λ=19, μ=29
A=(89,29,29), B=(49,29,49)
Mid Point of AB=(23,0,13)
Equation of line L3 can be
r=89^i+29^j+29^k+t(2^i+2^j^k) tR
r=29(4^i+^j+^k)+t(2^i+2^j^k) tR or
r=49^i29^j+29^k+t(2^i+2^j^k) tR
r=29(2^i^j+^k)+t(2^i+2^j^k) tRor
r=23^i+13^k+t(2^i+2^j^k) tR
r=13(2^i+^k)+t(2^i+2^j^k) tR

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equation of a Plane: General Form and Point Normal Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon