wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let L be the set of all lines in a plane and R be the relation in L defined as R={(L1,L2):L1L2}. Show that R is symmetric but neither reflexive nor transitive.

Open in App
Solution

Given the relation R is defined as R={(L1,L2):L1L2}.
Now this relation is not reflexive as L1RL1 does not hold as every line is not perpendicular to itself.
The relation is symmetric as L1RL2 gives L2RL1. [ As if L1 is perpendicular to L2 then L2 is also perpendicular to L1].
The relation is not transitive as L1RL2,L2RL3 does not gives L1RL3. [ As, if L1 is perpendicular to L2 and L2 is perpendicular to L3 then L1 may of may not be perpendicular to L3]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Relations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon