Let L denote antilog320.6 and M denote the number of positive integers which have the characteristic 4, when the base of log is 5 and N denote the value of 49(1−log72)+5−log54. Find the value of LMN.
Open in App
Solution
L=antilog320.6=(32)610=25×610=23=8 M=Integers from 625 to 3125=2500 N=49(1−log72)+5−log54 =49×7−2log72+5−log54 =49×14+14=504=252[∵mloga=logam&alogab=b] ∴LMN=8×2500×225=1600 Ans: 1600