tanα and tanβ are the roots of the quadratic equation t2+3t+4=0
∴tanα+tanβ=−3 and tanαtanβ=4
We know,
tan(α+β)=tanα+tanβ1−tanαtanβ=−31−4
⇒tan(α+β)=1
Now, L=sin2(α+β)+3sin(α+β)cos(α+β)+4cos2(α+β)
⇒L=tan2(α+β)+3tan(α+β)+41+tan2(α+β)
⇒L=1+3+41+1=4
∴L=4
M=sin2α+sin2β+sin2γ−2cosαcosβcosγ
We can write sin2α+sin2β
=12[2sin2α+2sin2β]
=12[1−cos2α+1−cos2β]
=12[2−2cos(α+β)cos(α−β)]
=1−cos(α+β)cos(α−β)
=1+cos(γ)cos(α−β) (∵α+β+γ=π)
∴sin2α+sin2β+sin2γ
=1+cos(γ)cos(α−β)+sin2γ
=2−cos(γ)[cos(γ)−cos(α−β)]
=2+cos(γ)[2cos(α)cos(β)]
=2+2cosαcosβcosγ
∴∑sin2α=2+2∏cosα
⇒∑sin2α−2∏cosα=2
∴M=2
N=cotαcotγ
Since cotα,cotβ and cotγ are in A.P.
∴2cotβ=cotα+cotγ
and α+β+γ=π2
⇒α+γ=π2−β
⇒cot(α+γ)=cot(π2−β)=tanβ
⇒cotα⋅cotγ−1cotα+cotγ=tanβ
⇒cotα⋅cotγ−12cotβ=tanβ
⇒cotα⋅cotγ=3
∴N=3
Hence, L+M+N=4+2+3=9