wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let L=sin2(α+β)+3sin(α+β)cos(α+β)+4cos2(α+β) where tanα and tanβ are the roots of the quadratic equation t2+3t+4=0, M=sin2α+sin2β+sin2γ2cosαcosβcosγ where α+β+γ=π and N=cotαcotγ where cotα,cotβ and cotγ are in arithmetic progression and α+β+γ=π2. Then the value of (L+M+N) is

Open in App
Solution

tanα and tanβ are the roots of the quadratic equation t2+3t+4=0
tanα+tanβ=3 and tanαtanβ=4
We know,
tan(α+β)=tanα+tanβ1tanαtanβ=314
tan(α+β)=1

Now, L=sin2(α+β)+3sin(α+β)cos(α+β)+4cos2(α+β)
L=tan2(α+β)+3tan(α+β)+41+tan2(α+β)
L=1+3+41+1=4
L=4

M=sin2α+sin2β+sin2γ2cosαcosβcosγ
We can write sin2α+sin2β
=12[2sin2α+2sin2β]
=12[1cos2α+1cos2β]
=12[22cos(α+β)cos(αβ)]
=1cos(α+β)cos(αβ)
=1+cos(γ)cos(αβ) (α+β+γ=π)
sin2α+sin2β+sin2γ
=1+cos(γ)cos(αβ)+sin2γ
=2cos(γ)[cos(γ)cos(αβ)]
=2+cos(γ)[2cos(α)cos(β)]
=2+2cosαcosβcosγ
sin2α=2+2cosα
sin2α2cosα=2
M=2

N=cotαcotγ
Since cotα,cotβ and cotγ are in A.P.
2cotβ=cotα+cotγ
and α+β+γ=π2
α+γ=π2β
cot(α+γ)=cot(π2β)=tanβ
cotαcotγ1cotα+cotγ=tanβ
cotαcotγ12cotβ=tanβ
cotαcotγ=3
N=3

Hence, L+M+N=4+2+3=9

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Harmonic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon