Let λ and α be real. Find the set of all values of λ for which the system of linear equation λx+(sinα)y+(cosα)z=0 x+(cosα)y+(sinα)z=0 −x+(sinα)y−(cosα)z=0 has a non-trivial solution. For λ=1, find all values of α
A
λ=sin2α+cos2α;α=mπ or α=kπ+π/4(m,kεI)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
λ=sinα+cosα;α=mπ or α=kπ+π/4(m,kεI)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
λ=sinα+cos2α;α=mπ or α=kπ+π/4(m,kεI)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
λ=sin2α+cosα;α=mπ or α=kπ+π/4(m,kεI)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aλ=sin2α+cos2α;α=mπ or α=kπ+π/4(m,kεI) Given λx+(sinα)y+(cosα)z=0,x+(cosα)y+(sinα)z=0 and −x+(sinα)y−(cosα)z=0 has non trivial solution ∴△=0⇒∣∣
∣∣λsinαcosα1cosαsinα−1sinα−cosα∣∣
∣∣=0 ⇒λ(−cos2α−sin2α)−sinα(−cosα+sinα)+cosα(sinα+cosα)⇒−λ+sinαcosα+sinαcosα−sin2α+cos2α=0⇒λ=cos2α+sin2α(∵−√a2+b2≤asinθ+bcosθ≤√a2+b2) ∴−√2≤λ≤√2 ...(1) When λ=1 cos2α+sin2α=1⇒1√2cos2α+1√2sin2α=1√2 ⇒cos(2α−π4)=cos(π4) ∴2α−π4=2nπ±π4 ⇒2α=2nπ−π4+π4 and 2α=2nπ+π4+π4 ∴α=nπ and α=nπ+π4