The correct option is B ln2−3+3λ
p=limn→∞⎛⎜
⎜
⎜
⎜
⎜⎝n∏r=1(n3+r3)n3n⎞⎟
⎟
⎟
⎟
⎟⎠1/n
Taking ln on both sides, we have
lnp=limn→∞1nn∑r=1ln(1+(rn)3)=1∫0ln(1+x3)dx
Using By-parts, with ln(1+x3) as the first function and 1 as the second function, we have
lnp=[xln(1+x3)]10−1∫0x⋅3x2dx1+x3=ln2−31∫0(1−11+x3)dx=ln2−3+3λ