Let (1−x+x4)10=a0+a1x+a2x2+.....+a40x40, then the correct option(s) is/are
A
a0+a2+a4+.....+a40=310+12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a0=a40=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a1=a39
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a39=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Aa0+a2+a4+.....+a40=310+12 Ba0=a40=1 Da39=0 (1−x+x4)10=a0+a1x+a2x2+.....+a40x40putx=1⇒a0+a1+a2+.....+a40=1putx=−1⇒a0−a1+a2−.....+a40=310adding botha0+a2+a4+.....+a40=310+12In original equaiton putx=0a0=1replacex→1x⇒(1−1x+1x4)10=a0+a1x+a2x2+.....+a40x40⇒(x4−x3+1)4=a0x40+a1x39+a2x38+....+a40Puttingx=0,we get a40=1differentiate and putx=0a39=0