The correct options are
A a0+a2+a4+.....+a40=310+12
B a0=a40=1
D a39=0
(1−x+x4)10=a0+a1x+a2x2+⋯+a40x40 ⋯(1)
Put x=1, we get
a0+a1+a2+⋯+a40=1
Put x=−1, we get
a0−a1+a2−⋯+a40=310
Adding both,
a0+a2+a4+⋯+a40=310+12
Put x=0 in (1), we get a0=1
Differentiating (1) w.r.t. x and then putting x=0,
a1=−10
Replace x by 1x in (1),
(1−1x+1x4)10=a0+a1x+a2x2+⋯+a40x40⇒(x4−x3+1)4=a0x40+a1x39+a2x38+⋯+a40 ⋯(2)
Putting x=0 in (2), we get a40=1
Differentiating (2) w.r.t. x and then putting x=0,
a39=0