wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let ¯¯¯¯¯z12¯¯¯¯¯z22z1¯¯¯¯¯z2=1 and |z2|1, where z1 and z2 are complex numbers. Then |z1| equals

Open in App
Solution

¯¯¯¯¯z12¯¯¯¯¯z22z1¯¯¯¯¯z2=1
|¯¯¯¯¯z12¯¯¯¯¯z2|2=|2z1¯¯¯¯¯z2|2
[|z1z2|2=|z1|2+|z2|22Re(z1¯¯¯¯¯z2) ]
|z1|2+4|z2|22Re(¯¯¯¯¯z1¯¯¯¯¯¯¯¯¯¯¯¯(¯¯¯¯¯¯¯2z2))=4+|z1¯¯¯¯¯z2|22Re(2( ¯¯¯¯¯¯¯¯¯z1¯¯¯¯¯z2 ))
[¯¯¯¯¯¯z=z, ¯¯¯¯¯¯¯¯¯z1z2=¯¯¯¯¯z1 ¯¯¯¯¯z2 ]
|z1|2+4|z2|22Re(2¯¯¯¯¯z1z2)=4+|z1|2|¯¯¯¯¯z2|22Re(2¯¯¯¯¯z1z2)
[|¯¯¯z|=|z| ]
|z1|2+4|z2|2=4+|z1|2|z2|2
|z1|2|z1|2|z2|2+4|z2|24=0
|z1|2(1|z2|2)+4(|z2|21)=0
(|z2|21)(|z1|24)=0
|z1|=2 as |z2|1

Alternate :
Put z2=0 in ¯¯¯¯¯z12¯¯¯¯¯z22z1¯¯¯¯¯z2=1, we get
¯¯¯¯¯z12=1
|z1|=2 as |z1|=|¯¯¯¯¯z1|

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon