∣∣∣¯¯¯¯¯z1−2¯¯¯¯¯z22−z1¯¯¯¯¯z2∣∣∣=1
⇒|¯¯¯¯¯z1−2¯¯¯¯¯z2|2=|2−z1¯¯¯¯¯z2|2
[∵|z1−z2|2=|z1|2+|z2|2−2Re(z1¯¯¯¯¯z2) ]
⇒|z1|2+4|z2|2−2Re(¯¯¯¯¯z1¯¯¯¯¯¯¯¯¯¯¯¯(¯¯¯¯¯¯¯2z2))=4+|z1¯¯¯¯¯z2|2−2Re(2( ¯¯¯¯¯¯¯¯¯z1¯¯¯¯¯z2 ))
[∵¯¯¯¯¯¯z=z, ¯¯¯¯¯¯¯¯¯z1z2=¯¯¯¯¯z1 ¯¯¯¯¯z2 ]
⇒|z1|2+4|z2|2−2Re(2¯¯¯¯¯z1z2)=4+|z1|2|¯¯¯¯¯z2|2−2Re(2¯¯¯¯¯z1z2)
[∵|¯¯¯z|=|z| ]
⇒|z1|2+4|z2|2=4+|z1|2|z2|2
⇒|z1|2−|z1|2|z2|2+4|z2|2−4=0
⇒|z1|2(1−|z2|2)+4(|z2|2−1)=0
⇒(|z2|2−1)(|z1|2−4)=0
⇒|z1|=2 as |z2|≠1
Alternate :
Put z2=0 in ∣∣∣¯¯¯¯¯z1−2¯¯¯¯¯z22−z1¯¯¯¯¯z2∣∣∣=1, we get
∣∣∣¯¯¯¯¯z12∣∣∣=1
⇒|z1|=2 as |z1|=|¯¯¯¯¯z1|