(→p×→q)×→r+(→q⋅→r)→q=(x2+y2)→q+(14−4x−6y)→p
⇒(→p⋅→r)→q−(→q⋅→r)→p+(→q⋅→r)→q=(x2+y2)→q+(14−4x−6y)→p
∴→p⋅→r+→q⋅→r=x2+y2 …(1)
and −→q⋅→r=14−4x−6y …(2)
From (1)+(2),
→p⋅→r=x2+y2−4x−6y+14 …(3)
(→r⋅→r)→p=→r
Taking dot product with →r, we get
(→r⋅→r)(→p⋅→r)=→r⋅→r⇒→p.→r=1
∴ From equation (3),
x2+y2−4x−6y+14=1
⇒(x−2)2+(y−3)2=0⇒x=2, y=3
Hence, x+y=5