Let Let Zk(k=0,1,2,...............6) be the roots of the equation (z+1)7+z7=0, then ∑6k=0Re(zk) is
Let zk=xk+iyk, we have (zk+1)7+z7k=0
⇒(zk+1)7=−z7k
⇒∣ zk+1∣7+∣ zk∣7
⇒∣ zk+1∣=∣ zk∣
⇒∣ xk+iyk+1∣2=∣ xk+iyk∣2
⇒(xk+1)2+y2k=x2k+y2k
⇒2xk+1=0 or xk=−12
Thus ∑6k=0Re(zk)=∑6k=0xk=−72