The correct option is D (12,−12,−2)
limx→0sinx+aex+be−x+cln(1+x)x2=1limx→0(x−x331)+a(1+x1!+x22!+x33!)x2+b(1−x1!+x22!−x33!)+c(x−x22+x33)x2=1limx→0(a+b)+(1+a−b+c)x+(a2+b2−c2)x2x2+(−13!+a3!−b3!+c3)x3x2=1
When
a+b=0,1+a−b+c=0,−13!+a3!−b3!+c3=0 and a2+b2−c2=1
Gives
a=12,b=−12,c=−2